Rbf-arx Model-based Robust Mpc for Nonlinear Systems
نویسندگان
چکیده
An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems. First, the nonlinear system is identified off-line by a RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncertain linear parameter-varying (LPV) model are built to approximate the present and the future system’s nonlinear behavior respectively. Subsequently, based on the approximate models, a min-max robust MPC algorithm with input constraint is designed for the nonlinear systems. The closed loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and the feasibility of the linear matrix inequalities (LMIs). Simulation study to a NOx decomposition process illustrates the effectiveness of the modeling and robust MPC approaches proposed in this paper. Copyright © 2005 IFAC
منابع مشابه
Nonlinear system modeling and robust predictive control based on RBF-ARX model
An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems with unknown steady state. First, the nonlinear system is identified off-line by RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization mode...
متن کاملRBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process
This paper considers the modeling and control problem for nonstationary nonlinear systems whose dynamic characteristics depend on time-varying working-points and may be locally linearized. It is proposed to describe the system behavior by the RBFARX model, which is an ARX model with Gaussian radial basis function (RBF) network-style coefficients depending on the working-points of a system. The ...
متن کاملThe Rbf-arx Model Based Modeling and Predictive Control for a Class of Nonlinear Processes
This paper considers modeling and control problems of the non-stationary nonlinear processes whose dynamics depends on the working point. A hybrid RBF-ARX model-based predictive control (MPC) strategy without resorting to on-line parameter estimation for this kind of processes is presented. The RBF-ARX model is composed of the RBF networks and a rather general form of ARX model, which is identi...
متن کاملRobust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کامل